Geops (Geosciences Paris Sud)


Nos tutelles

CNRS

Nos liens

Rechercher




Accueil > Recherche > Thèses / HDR > Thèses soutenues > 2018

25/09/2018 - MERESESCU Alina

Sujet : « Problèmes inverses de déconvolution appliqués aux Géosciences et à la Planétologie ».

  • Titre anglais : Inverse problems of deconvolution applied in the fields of Geosciences and Planetology
  • -*Ecole Doctorale : Sciences mécaniques et énergétiques, matériaux, géosciences
  • Spécialité : Structure et évolution de la terre et des autres planètes
  • Etablissement : Université Paris Saclay préparé à Université Paris-Sud
  • Unité de recherche : UMR 8148 - Géosciences Paris Sud
  • Directeur de thèse : Frédéric Schmidt & co-encadrant : Matthieu Kowalsi (Labo L2S, SUPELEC, CNRS).
  • Financement : Centre of Data Science, IDEX Université Paris Saclay-COFUND.

Thèse soutenue le mardi 25 Septembre 2018 à 14h00

devant le jury composé de :
- Frédéric SCHMIDT, Professeur, Université Paris-Sud, Paris-Saclay, Directeur de thèse
- Émilie CHOUZENOUX, Maître de Conférences, Laboratoire d’informatique
- Gaspard-Monge, Université Paris-Est Marne-la-Vallée, Rapporteur
- Saïd MOUSSAOUI, Professeur, Ecole Centrale de Nantes, Rapporteur
- Bortolino SAGGIN, Professeur, Dipartimento di Meccanica, Politecnico di Milano, Examinateur
- Sébastien BOURGUIGNON, Maître de Conférences, École Centrale de Nantes (ECN) / Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), Examinateur
- Matthieu KOWALSKI, Maître de Conférences, Laboratoire des Signaux et Systèmes (L2S), UMR 8506 CentraleSupelec-CNRS-Univ Paris-Sud, Paris-Saclay CoDirecteur de thèse
- Hermann ZEYEN, Professeur, Laboratoire de Geosciences, Université Paris-Sud, Paris-Saclay, Examinateur

Résumé de la thèse en français :

Le domaine des problèmes inverses est une discipline qui se trouve à la frontière des mathématiques appliquées et de la physique et qui réunit les différentes solutions pour résoudre les problèmes d’optimisation mathématique. Dans le cas de la déconvolution 1D, ce domaine apporte un formalisme pour proposer des solutions avec deux grands types d’approche : les problèmes inverses avec régularisation et les problèmes inverses bayésiens. Sous l’effet du déluge de données, les géosciences et la planétologie nécessitent des algorithmes de plus en plus plus complexe pour obtenir des informations pertinentes. Dans le cadre de cette thèse, nous proposons d’apporter des connaissances dans trois problèmes de déconvolution 1D sous contrainte avec régularisation dans le domaines de l’hydrologie, la sismologie et de la spectroscopie. Pour chaque problème nous posons le modèle direct, le modèle inverse, et nous proposons un algorithme spécifique pour atteindre la solution. Les algorithmes sont définis ainsi que les différentes stratégies pour déterminer les hyper-paramètres. Aussi, des tests sur des données synthétiques et sur des données réelles sont exposés et discuté du point de vue de l’optimisation mathématique et du point de vue du domaine de l’application choisi. Finalement, les algorithmes proposés ont l’objectif de mettre à portée de main l’utilisation des méthodes des problèmes inverses pour la communauté des Géosciences.

Résumé de la thèse en anglais :

The inverse problem field is a domain at the border between applied mathematics and physics that encompasses the solutions for solving mathematical optimization problems. In the case of 1D deconvolution, the discipline provides a formalism to designing solutions in the frames of its two main approaches : regularization based inverse problems and bayesian based inverse problems. Under the data deluge, geosciences and planetary sciences require more and more complex algorithms for obtaining pertinent information. In this thesis, we solve three 1D deconvolution problems under constraints with regularization based inverse problem methodology : in hydrology, in seismology and in spectroscopy. For every of the three problems, we pose the direct problem, the inverse problem, and we propose a specific algorithm to reach the solution. Algorithms are defined but also the different strategies to determine the hyper-parameters. Furthermore, tests on synthetic data and on real data are presented and commented from the point of view of the inverse problem formulation and that of the application field. Finally, the proposed algorithms aim at making approachable the use of inverse problem methodology for the Geoscience community.
Mots clés en français : Mars,régularisation,déconvolution aveugle,hydrologie,sismologie,déconvolution
Mots clés en anglais : Mars,regularisation,blind deconvolution,hydrology,seismology,deconvolution