Geops (Geosciences Paris Sud)


Nos tutelles

CNRS

Nos liens

Rechercher




Accueil > Recherche > Thèses / HDR > Thèses soutenues > 2015

22/09/2015 - PONS Tony

Caractérisation des oxy-hydroxydes de fer et des éléments associés (S, Se, As, Mo, V, Zr) dans les environnements redox favorables aux gisements d’uranium.

  • Directeur : Maurice Pagel
  • Tuteurs : Claude Caillat (claude.caillat@areva.com) et Jean Reyx (jean.reyx@areva.com)
  • Bourse CIFRE AREVA
  • Début de thèse : octobre 2010

Thèse soutenue le mardi 22 septembre 2015 à 14h30 à l’amphithéâtre Blandin, bâtiment 510 sur le Campus d’Orsay.

Devant un jury composé de :
- Daniel Beaufort (Professeur, Université de Poitiers) – Rapporteur
- Michel Cuney (Directeur de recherche CNRS, Université de Lorraine) – Rapporteur
- Jocelyn Barbarand (Professeur, Université Paris Sud) – Examinateur
- Anne-Magali Seydoux Guillaume (Chargé de recherche HDR CNRS, Université J.Monnet) – Examinateur
- Marc Brouand (Ingénieur géologue docteur, AREVA Mines) – Examinateur
- Maurice Pagel (Professeur émérite, Université Paris Sud) – Directeur de thèse

Résumé :

Ce travail présente une étude multi-échelle et multi-technique sur la caractérisation des oxy-hydroxydes de fer dans trois types de gisements d’uranium et leur encaissant. Le choix des sites d’études s’est porté sur un gisement de type roll front : Zoovch Ovoo dans le bassin crétacé de East Gobi (Mongolie) ; un autre de type tectono-lithologique : Akola/Ebba dans le bassin de Tim Mersoï (Niger) et enfin un type discordance protérozoïque : Kiggavik en bordure du bassin du Thelon (Canada).

Une nouvelle approche a été mise en œuvre pour caractériser les oxy-hydroxydes de fer sur échantillons macroscopiques : la spectroscopie infrarouge de terrain en utilisant le spectromètre ASD TerraSpec®. À partir d’indices originaux calculés sur les spectres, il a été possible à la fois de caractériser les oxy-hydroxydes de fer ; seules l’hématite et la goethite ont été identifiées dans les parties oxydées des différents fronts uranifères, et de visualiser les différentes zonations d’altération le long des fronts redox. De plus, la partie visible du spectre a été utilisée pour quantifier la couleur des échantillons à travers les paramètres des systèmes ITS (Intensité – Teinte – Saturation) et de Munsell. L’étude des paramètres de couleurs a permis d’identifier une teinte spécifique pour les échantillons minéralisés étudiés : un mélange de jaune et de rouge (2,5 à 10 YR en notation de Munsell). A l’échelle des cristaux, les oxy-hydroxydes de fer ont été caractérisés par la spectroscopie micro-Raman. Cette étude a permis de mettre en évidence une différence de cristallinité des cristaux d’hématite dans les différents gisements.

D’un point de vue morphologique, les cristaux de goethite du gisement de Zoovch Ovoo, seul oxy-hydroxyde de fer authigène décrit dans ce front, sont maclés en forme d’étoile à six branches, ce qui témoigne d’une cristallisation de basse température, comparé aux gisements du Niger et de Kiggavik. Cette cristallisation est principalement contrôlée par la disponibilité des ions FeIII dans le fluide, libérés par la dissolution de la pyrite en milieu oxydant et le pH.

D’un point de vue chimique, les oxy-hydroxydes de fer enregistrent le passage du fluide uranifère de part leur teneur eu uranium. Et d’autre part la composition en éléments en trace qui marque la typologie du gisement, par exemple de la teneur en zirconium dans les oxy-hydroxydes de fer provenant du gisement du Niger, source d’origine volcanique. Cette typicité de la mobilité du zirconium est particulièrement bien exprimée dans les fronts uranifères d’Ebba par la précipitation de cristaux authigènes de zircon contemporains de la pechblende.

Les données minéralogiques et géochimiques obtenues dans ce travail sur le gisement de Zoovch Ovoo permettent de proposer un modèle original pour sa formation : l’uranium n’a pas précipité massivement en amont du front puisqu’il n’y a pas d’auréole d’irradiation observable en cathodoluminescence dans les minéraux détritiques dans la zone oxydée. L’uranium a précipité lorsque l’eau oxydante a rencontré un faciès sédimentaire ayant un pouvoir réducteur assez fort pour permettre la réduction de l’uranium. La précipitation a lieu dans un endroit particulier de la formation : un paléo-lac où la matière organique et la pyrite sont abondantes.